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We consider the behaviour of an interface between two immiscible inviscid incompres-
sible fluids of different density moving under the action of gravity, inertial and inter-
facial tension forces. A vortex-sheet model of the exact nonlinear two-dimensional
motion of this interface is formulated which includes expressions for an appropriate
set of integral invariants. A numerical method for solving the vortex-sheet initial-value
equations is developed, and is used to study the nonlinear growth of finite-amplitude
normal modes for both Kelvin-Helmholtz and Rayleigh-Taylor instability. In the
absence of an interfacial or surface-tension term in the integral-differential equation
that describes the evolution of the circulation distribution on the vortex sheet, it is
found that chaotic motion of, or the appearance of curvature singularities in, the
discretized interface profiles prevent the simulations from proceeding to the late-time
highly nonlinear phase of the motion. This unphysical behaviour is interpreted as a
numerical manifestation of possible ill-posedness in the initial-value equations equi-
valent to the infinite growth rate of infinitesimal-wavelength disturbances in the
linearized stability theory. The inclusion of an interfacial tension term in the circula-
tion equation (which stabilizes linearized short-wavelength perturbations) was found
to smooth profile irregularities but only for finite times. While coherent interfacial
motion could then be followed well into the nonlinear regime for both the Kelvin—
Helmholtz and Rayleigh-Taylor modes, locally irregular behaviour eventually re-
appeared and resisted subsequent attempts at numerical smoothing or suppression.
Although several numerical and/or physical mechanisms are discussed that might
produce irregular behaviour of the discretized interface in the presence of an interfacial-
tension term, the basic cause of this instability remains unknown. The final description
of the nonlinear interface motion thus awaits further research.

1. Introduction

The problem of the nonlinear stability of an interface between two fluids of different
density remains a considerable challenge to mathematicians and numerical analysts
alike. If the heavier fluid lies above the lighter fluid, then under the action of the de-
stabilizing force of gravity the interface may be subject to Rayleigh-Taylor instability
(see Taylor 1950) resulting in the characteristic spike-bubble interfacial shape pattern
as the interface amplitude grows exponentially with time. When the lighter fluid is
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above, the configuration is statically stable, but the superposition of a velocity differ-
ence across the interface can generate inertially induced Kelvin—-Helmholtz instability
(Kelvin 1910). If the two fluids are both incompressible and inviscid then in the absence
of surface tension the linearized theory of both these instability modes predicts that
the growth rate of disturbances increases without limit with decreasing wavelength.
In real fluids this behaviour is modified by the stabilizing action of both interfacial
(surface) tension and viscosity. For the inviscid Kelvin—-Helmholtz mode, the action of
surface tension is sufficient to inhibit the onset of (linearized) instability at all wave-
lengths for values of the velocity difference that do not exceed a certain critical value
(Chandrasekhar 1961). Greater velocity differences lead to instability, but only for
wavelengths above a certain minimum value which depends on both the velocity
difference and the fluid properties. In the (linearized) Rayleigh~Taylor mode, surface
tension stabilizes interfacial perturbations at all wavelengths below a critical value
that depends only on fluid properties (Chandrasekhar 1961; Bellman & Pennington
1954).

In an effort to proceed beyond the range of validity of the linearized theories, various
numerical methods have been applied to the interfacial-stability problem and torelated
phenomena such as nonlinear free-surface wave behaviour. For Rayleigh-Taylor
instability these have included numerical solutions of the time-dependent Navier—
Stokes equations (Harlow & Welch 1966; Daly 1967, 1969; Hirt, Cook & Butler 1970),
at least one of which (Daly 1969) shows the effect of surface tension on the late-time
formation of a heavy-fluid spike for eylindrical geometry. Earlier, Birkhoff (1962)
showed that two-dimensional inviscid interfacial motion could be formulated in terms
of variables describing the shape and circulation distribution of a vortex sheet repre-
senting the interface, thus reducing the effective space dimensionality of the problem
by one. At the same time Birkhoff argued that without the smoothing effect of surface
tension and/or viscosity, the subsequent nonlinear initial-value problem may be ill-
posed, in view of the unbounded growth rate at decreasing wavelength in the linear
analysis. Since surface tension removes the ill-posedness in the linear theory he sug-
gested that it may do likewise in the nonlinear case, although no proof was given.

For the much studied and special case of vortex-sheet motion in a constant-density
fluid (as a shear-layer model) surface tension cannot generally beintroduced on physical
grounds — although there isno reason why it could not be used as an artificial smoothing
method —so that questions associated with ill-posedness remain. The first numerical
study of this problem was that of Rosenhead (1931) who modelled the vortex sheet by
a row of point vortices whose mutually self-inductive motion was supposed to approxi-
mate the true vortex-sheet motion. Unfortunately both Rosenhead and later workers
found that chaotic or ‘turbulent’ behaviour of the vortices resulted in regions where
smooth roll-up of the vortex sheet might otherwise have been expected. In the half-
century following Rosenhead’s work, the cause of this behaviour and its possible
remedy have been the subject of intense debate. Three possible explanations have
emerged:

(@) the chaotic motion is a result of inadequate resolution in regions of high curvature
(i.e. more vortices are needed), or of the use of an unstable time-stepping procedure;

(b) it is a result of the crudeness of the point-vortex model as an approximation to the
Cauchy principal value (CPV) integral that expresses the self-induced mogion of a
continuous vortex sheet;
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(¢) it is a discrete numerical equivalent of the linearized infinitesimal-wavelength
instability.

Of the above, (a) has been discounted in a careful study by Moore (1974). In consider-
ing (b), Fink & Soh (1978) showed that terms proportional to the logarithm of the local
point-vortex spacing are neglected in the point-vortex model. They proposed a method
of redistributing the vortices at each time step which eliminated this error and which
appeared to check the onset of chaotic motion. Baker (1980), however, showed sub-
sequently that Fink & Soh neglect curvature terms in the CPV integral calculation,
which leads to further errors. He demonstrated that accurate calculation of the
integral by subtracting off the singularity did not lead to smooth behaviour. A similar
conclusion was reached independently by van de Vooren (1980). Moore {1980) presents
a very strong case for (c) by detailed examination of the special case of a uniform
circular vortex sheet. Through a combination of spectral analysis of the growing
numerical error and analytical study of discrete-model behaviour Moore concludes
that the mechanism of chaotic motion isindeed a discrete form of Helmholtz instability.
The re-positioning method of Fink & Soh and a linear-smoothing technique used by
Longuet-Higgins & Cokelet (1976) to suppress a saw-tooth-like instability in related
free-surface flows are interpreted as ad hoc but effective means of inhibiting growth of
the error. The possible counterpart of the instability in a continuous vortex sheet was
suggested to be the spontaneous growth of a curvature singularity (Moore 1979).

Extensions of vortex-sheet-like formulations of interfacial motion to the case of a
finite-density discontinuity have been developed by several authors. Zaroodny &
Greenberg (1973) applied this method to free-surface-wave behaviour. They did not
include a surface-tension term, but, since this flow is not subject to linearized short-
wavelength inertial instability, the problem of ill-posedness is not critical. The same
applies to the study by Longuet-Higgins & Cokelet (1976) of forced breaking waves, at
least before the wave overturns. The cause of their observed saw-tooth-like instability
is unknown but, for the reason given above, it seems unlikely that it is physically
based. Baker, Meiron & Orszag (1980) do not include surface tension in their vortex
study of Rayleigh-Taylor instability, but did not encounter difficulties associated
with the short-wavelength problem. Their results do not agree with those of the
present study for the same flow. Zalosh (1976) appears to have been the first to
include surface tension in a vortex-type treatment of interfacial motion. Using the
simple point-vortex model to study Kelvin-Helmholtz instability, Zalosh found that,
for unstable conditions, irregularities developed on the interface profile where some
form of coherent roll-up might be expected. The possible relationship of this
behaviour to chaotic motion in the constant-density case or to the saw-tooth instability
in the other extreme of free-surface flow remains an unanswered question.

In the present paper we develop a vortex-sheet formulation for the inviscid-
incompressible two-fluid interfacial problem. In §2 the initial-value equations describ-
ing the motion of the density interface are derived. The equation for the evolution of
the circulation distribution is one order of differentiation (along the interface) less than
in the formulations of Birkhoff (1962), Zalosh (1976) and Baker et al. (1980), thus allow-
ing a somewhat more direct treatment of interfacial tension terms. A numerical
method for the solution of the initial-value equations is developed in §3. The trouble-
some CPV integrals are treated by subtraction of the singularity so that curvature
terms are included. In §4 the method is applied to Kelvin-Helmholtz instability at

17-2



510 D. I. Pullin

Froude numbers of order unity, while in §5 it is used to study Rayleigh-Taylor insta-
bility. The results of these simulations are discussed in §6, and the main conclusions
drawn are summarized in §7.

2. Nonlinear equations for the interface motion

Consider the two-dimensional motion of two immiseible, incompressible, inviscid
fluids separated by an interface. We choose rectangular co-ordinates (X, Y'), with the
X-axis horizontal and aligned with initial mean level of the interface, and the Y-axis
vertical. The local gravitational field with acceleration due to gravity ¢ acts in the
negative Y-direction. We use the subscripts 1 and 2 to denote fluid properties below
and above the interface respectively. The fluid densities are g, and g, while the constant
X-velocities far from the interface are U, (¥ - —0), U, (¥ - c0). The interfacial
shape is assumed to be periodic in the X-direction with wavelength A. Units of length,
time and mass are chosen respectively as A/, (A/gm)} and }(5, + §,) (A/m)® and, except
where otherwise stated, all quantities shall be non-dimensionalized with respect to
these scales.

For later convenience we shall work in a framework such that 5,0, + 5,0, = 0.
When the Froude number F is defined as

0,-0,
(Ag)t’

it then follows that the dimensionless velocity at infinity and the density in the fluid 1
are respectively

F = (1)

Uy =3l—-a)ymF, p,=1+a, (2a)

while the corresponding quantities in the fluid 2 are

U= -1 +0)7mtF, p,=1-a, (20)
where o = Pl;Pz. (3)
P17+ P2

We seek a description of the two-fluid motion in terms of the motion of a single
wavelength of the interface, which we denote by C. As independent variables we take
the time ¢ and a parameter a that labels a particular marker particle moving on C in a
fashion to be described subsequently. The shape of C at any ¢ is given by the complex
function z(a,t) = x(a,t) +1y(a,t). For a single wavelength of length 7 we arbitrarily
take 47 > a > — i, so that X-wise periodicity implies

zla+m,t) = 2(a,t) +m, (4)

2.1. Complex velocity field

The fluid motion is assumed to be two-dimensional, and to startfrom initial conditions
to be specified under the action of gravity, surface tension, pressure and inertial forces
only, so that except on C it may be thus taken to be irrotational for all¢ > 0. Hence we
may define a complex velocity potential W = ¢ + i on each side of C, where ¢ and ¢
are the velocity potential and stream function respectively. An expression for W valid



Numerical studies of surface-tension effects 511

throughout both fluids may be constructed through a distribution of vortex-like
singularities on C. We thus introduce Birkhoff’s (1962) circulation co-ordinate I'(a, {),
which we define here as the cumulative circulation between a point labelled by @ on C
and the arbitrarily chosen point a = . Milne-Thomson (1968) obtains expressions
for W and for the complex velocity dW /dZ induced by an infinite, periodic array of
point vortices. Expressions for corresponding quantities at a general point Z = X +¢Y
in either fluid due to the present periodic but continuous singularity distribution
(vortex sheet) may be developed through a simple extension of Milne-Thomson’s
results to yield

1 [t . ) A
W(Z,t) = 2—m,f_1}”log [sin (Z —2 )]%Tda +UZ, (5)
dw 1 [i= aor
E-Z_é;b:f_é,,COt(Z_z )éyd(l +U, (6)

where U = L(U, + U,) is the uniform convection velocity, 2’ = z(a’,t) and " = I'(a', t).
Expanding the integral in (6) for ¥ - 1 o0, and comparing the resulting asymptotic
X-velocities with (2) then shows that, since by definition I'(17,t) = 0, we must have
[(—4mt) = —m(U,;—U,) = —at F, independent of ¢. Hence I'(a, t) satisfies

INa+7,t)=T(a)+7tF. (7)
Equations (4) and (7) show that
z(a,t)—a, T(a,t)-ntFa (8)

must always remain periodic functions of a.

2.2. Equations for z(a, t) and I'(a,?)

The dependent variables of the motion are z(a,¢) and I'(a,?). To obtain equations for
these quantities two conditions, one kinematic and the other dynamic, must be
satisfied on €. The kinematic condition is the usnal requirement that the two contiguous
surfaces bounding the fluid 1 and fluid 2, which meet at and define C, should each always
consist of the same material particles, thus allowing local relative tangential motion of
these surfaces at C, but not local relative normal motion. An equation for z(a, t) that
automatically satisfies the kinematic condition may be formulated by extending the
now standard convention of defining the velocity z = (9z/0t), = w+1iv of a marker
particle on C as

aw oI’ {02\
o _ (AW N aT (02
© = ( dz)p+2f(a)6a (aa) ’ 9
where
dW 1 P , o’ , _
(Ez—)p - Q—m'f_%ﬂ cot [2(a, t) —z(a ’t)](')a_'da +U, (10)

and where z* is the complex conjugate of z. The integral in (10) is a CPV integral, being
the mean of the generally unequal values cbtained as Z — z(a, ) on C from either side,
In (9) we have defined our marker-particle velocity as the weighted average of the
complex velocities on either side of C, the weights being chosen as 1[1+f(a)] and
$[1—f(a)] for the fluid 1 and fluid 2 sides respectively. The function f(a) is an observer-
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chosen, continuous single-valued function which satisfies (at least) 1 > f> —1 for
im > a » —in. The role of f(a) in the present formulation of the interface motion is
discussed further in appendix A.

The dynamic condition to be satisfied is that the pressure difference between the
fluids at C must be balanced by the interfacial force due to surface tension. If we denote
these pressures by p, and p,, this requirement may be written in dimensionless form as

_ __1,01—,02 2 11
Pi—Pe = 2p—1+p2ﬁf<- (11)
In(11 SJL0z* [0a 022/ 0a®
th o) = LT (12)
A
B == (13)

where « is the curvature of C, .# denotes the imaginary part of a complex argument and
= 2n{g/y|p,—P.|}? is a critical wavelength (see §4.1), ¥ being the interfacial-
tension coefficient for the fluid pair.
To express (11) in terms of (z, I') we now write Bernoulli’s equation in the fluids 1
and 2 respectively as

=8 - 22

win=-s (9, 5]

where P, (t) and P,(t) are arbitrary functions of time, and (9¢/ct), and (9¢/ot), are
understood to be derivatives at fixed Z. We now let Z — z(a,t) from each side of C in
(14) and (15), and substitute the difference between these equations into (11), using
(2) to express p; and p, in terms of «. The discontinuity in ¢/t across C may be
evaluated by taking (9/0t), of (5) and integrating by parts the log [sin(Z —2’)] integral
in the result. The |d W /dZ|? terms can be treated through (6)and (9). After some lengthy
algebra, we finally obtain

+ Y] +P,(t), (14)

+Y]+P() (15)

. in ’
I+ f . I f[a (z—z’)] da’ = Q(a,t)+ 2[P,(t) — Py(t)] +S(t), (16)
where
in ! 2
Qa,t) = a{;l;f . g; I cot(z—2")]da’ ——‘ (%—P—:) —-2_7/}
in )
3= (5) |7+l ks (1)

and I = (aT'/ét),. In (17),2 and ( (dW /dz), are given by (9) and (10), while S(¢) is a known
function of time which arises from the ¢/t discontinuity across C. Together with
Pi(t) and Fy(t), S(t) may be eliminated by noting that by definition we must have

Pty =T(=4m,1) = 0.
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Putting @ = {7 in (16) and (17), and subtracting the result from (16) then leads to a
set of initial-value equations for z(a, ¢) and for I'(a, ¢) as

aw ol foz\ 1
3k - f 1f__§ =
‘ ( dz)p+ 2f3a (6(1) ’ (18)

I+ %fi I’ f{% [cot (z —2) — cot (zy —z')]} da’ = Q(a,t)-Q(m,t),  (19)
wherezy = 2(47,¢).

Equation (19) expresses the rate of change of circulation following marker particles
due to the action of gravity, differential tangential accelerations of either side of C,
surface tension and our choice of weighting function. For known 2(a,t) and I'(a,),
#(a,t) follows from (18). The right-hand side of (19) may then be evaluated, but this
equation as a whole is a Fredholm integral equation of the second kind for I'(a, t) which
must be solved in order to integrate forward in time. For given ¢, £, F and f(a), (18) and
(19) together with (12) and (17) and specified initial conditions [z(a, 0), ['(a, 0)] are the
basis of the present calculations. Birkhoff’s (1962) formulation of the interfacial motion
may be obtained by putting F = f# = 0, f(a) = 0and by differentiating (19) with respect
to a. Note that, for & = 0, f(a) = 0, (19) then shows that I'(a,t) = ['(a, 0), while (18)
reduces to the usual equation for the motion of a periodic vortex sheet. In this case the
stabilizing effect of surface tension at infinitesimal wavelengths is absent.

2.3. Integral invariants of the motion

There exist several integral properties of the flow which should remain invariant with
time whatever the motion of ', and which can be monitored in a computational solution
of (18) and (19) as a check on its accuracy. Considerations of overall mass conservation
show that Q, the mass flux across C per wavelength, and #, the mean level of C, should
remain invariant. These quantities are given by

o[ e o

_ 1 [t ox
y=;f_%”y(%)da. (21)

In our chosen reference framework the X-momentum L, per wavelength (see appendix
B) should also be invariant, since gravity acts only in the y-direction. The energy of the
motion has three components, namely the potential energy, the interfacial surface
energy associated with work done against surface tension in deforming C and the
kinetic energy. Taking y(a,#) = 0 as the datum for potential and interfacial surface
energy, the first two of these quantities are given respectively by

o
V() = —af_%ﬂyzégda, (22)
_ B (b |2
Us(t) = T[f_i" % da*ﬂ] . (23)

For F + 0, or a < 1, the kinetic energy is infinite owing to finite fluid velocities at
Y -+ + 0. In appendix B we give arguments to show that 7'(f) given by (53) is the
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appropriate finite quantity associated with the two-fluid kinetic energy per wave-
length. Hence we may expect that

E=VH+U@®)+T(@), (24)

is an invariant of the motion associated with the total energy per wavelength. Equation
(24) may be shown to yield the correct total energy per wavelength for the case ¥ = 0,
a # 0,and also fora = 1, F + 0.

3. Numerical method of solution

We shall replace (18) and (19) by a finite number of ordinary differential equations.
The interval 17 > @ > — 17 is thus divided into N —1 equal sub-intervals of length
Aa = /(N — 1), the end points of which we denote by a; (k = 1,..., N), witha, = — 47
and ay = 4. These a,, then label N marker particles on C. At time ¢ we denote the
positions and circulations of these particles by z.(t) = 2,(f) + iy, (t) = z(a,t) and
L8 = D(a,,t) (k = 1, ..., N) respectively, while the instantaneous time derivatives of
these quantities are denoted by £, and I',(k =1,...,N). Since zy = 2, + 7 and since
', and T'y are constants, we are then left with 3N — 4 dependent variables for which we
shall obtain first-order ordinary differential equations in time of the form

4(t) = 4[0] (k=1,..,N-1),)
. . - (25)
Dyt) = T4[0] (k=2,..,N-1),)

where © = (o, §, F; N; ay,...,ay; 24, -..,2y; Iy, ..., I'y) represents a complete set of
parameters defining the instantaneous state of motion.

For given O, the right sides of (25) are to be calculated through a numerical approxi-
mation to (18) and (19), evaluated at ¢, (k = 1, ..., N).

This requires (i) finite-difference estimates of 9/da derivatives; (ii) the replacement
of the CPV integrals in (17) and (10) by numerical integration formulae; (iii) the
solution of the integral equation (19) for I'(a, t); (iv) a method of integrating (25)
forward in time.

The derivatives required are (0z/da),, (6%2/8a®),, (oT'/oa)y, (02T /0a?), and (9%/0a),,
where (2/0a), refers to a derivative evaluated at a;. The (9z/0a), and (0I'/da), were
evaluated by applying periodic cubic splines for equal intervals (see Ahlberg, Nilson &
Walsh 1967, chap. 2) to the periodic functions defined by (8). The second derivatives
were then obtained by a spline-on-spline technique from the known first derivatives.
The (92/0a),, were also evaluated by periodic splines applied to the previously calculated
2, (k=1,..,N).

3.1. Treatment of the singular integrals and solution of the integral equation

The CPV integrals in (10) and (17) may both be regarded as special cases of the general
integral
in

I{a) =J£_§ g(a’) cot [z(a) ~z(a")] da’, (26)
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where g(a) is a known, complex, periodic function of a. This integral was evaluated by
first writing it as

I(a) = f :ﬂg(a')K(a, o'y da’ ~ (-2-2) - f :r” J(a,a') da’

+9(a)(g_2)—13£h cot(a—a')da’, (27)

3
where

K(a,a') = cot [z(a) —z(a’)]— (Z—Z)—lcot (a—a’), (28)
J(a,a’) = [g(a) —g(a')] cot (a —a’).

In (27) the singularity has been isolated into the third integral, which may be shown to
vanish identically. The first two integrands are bounded and analytic at @ = a’, with
K(a,a) = }(¢%2/0a?)/(0z/0a)? and J(a,a) = dg/da. The corresponding integrals were
calculated numerically using a 4-point Lagrangian formula (see Abramowitz & Stegun
1972, p. 215) to evaluate contributions over each Aa, leading to

N 0z ~1 N
I = T wyga) Kena)- (5) 2 wd@pay). (29)
i=1 @k j=1

where I, = I(a;),andw;(j = 1,..., N)areknownintegration weights. The term for j = k
in the first sum of (29) leads to the curvature correction discussed by van de Vooren
(1980), Baker (1980) and Moore (1980). Since g(a) = 9I'/da and 2(0I' /da) respectively
for the integralsin (10) and (17), the j = % term in the second sum yields the previously
noted derivatives 9°I" /0a? and 92/ 0a.

A numerical solution of the integral equation (19) was obtained by first writing it in
the convenient form

1'1+ffh (f'—F)J[(?—Z—,) cot (z——z’)] da’

) _4n

_EJ‘)"" I [(31) cot (2 '—z’)] da’ = Q(a,t)—Q(km 1), (30)
) _ya oa’ N B ’ 2l
whichis valid by virtue of f o 00t (2—2")dz’ = 0. Theintegrand of the first integral on the
left now vanishes at a = a’. The integrals were each split into NV — 1 integrals over each
Aa, which were then approximated using the 4-point Lagrangian integration formula.
Forgiven @, evaluating (30) thusata, (k = 2, ..., N)gives aset of N — 2linearequations
for the fk (k= 2,...,N) with known coefficients, which were solved by a standard
method.
3.2. Solution of the ordinary differential equations

Equations (25) were integrated forward in time using the IMSL (1978) FORTRAN IV
differential equation solver DGEAR. Of several options available in DGEAR, a self-
starting Adams-Bashforth predictor—corrector method for non-stiff equations was
chosen. This method automatically varies the order of the predictor—corrector and
chooses the current time step At such that the single-step error does not exceed a user-
specified error per time step in the root-mean-square norm. The method is well-
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documented (see Gear 1971), and has been previously utilized by the author for the
solution of related interfacial motion problems (see Pullin 1981),

The number of evaluations of (,, I',) required per At by DGEAR varies with the
current order of the predictor—corrector. In the present application the complete
scheme for the calculation of the (z,, f‘k) was implemented for each evaluation includ-
ing solution of the integral equation. With N = 91 points along C about 4-1s of the
University of Melbourne CDC CYBER-72 computer central processing time was
required for each calculation of the 269 time derivatives. The major portion of this
time (about 75 9,) was used to compute the cot (z; —z;), while about 20 9%, was used for
solution of (30). At each At the invariants Q, 7, L, and E were calculated, the last two
of which require knowledge of W, = W(a,,t)(k = 1,...,N) on C in addition to the
current (z,, I';) set. These were obtained through evaluation of the right side of (5)
after suitable rearrangement of the integral and integration by parts.

3.3. Tests on interfacial and free-surface waves

The numerical method was tested by calculating the motion of a nonlinear progressive
interfacial wave from known initial conditions obtained from the solutions of Holyer
(1979). A wave with a value of Holyer’s amplitude parameter of 0-1 was chosen with
o = 0-8182 (py/p, = 0-1) and F = 0. This is a slightly nonlinear gravity wave (no
surface tension) with crest height of 0:052061 and depth of 0-047940 moving with
velocity of 0-642269. The equivalent linearized wave velocity is 0-639602. A value of
N = 51 points on C was chosen while values of (z;, I';) kindly supplied by Dr Holyer
were used as initial conditions. It was found however that, after about 1-1:-5 wave
periods, a saw-rooth-like instability appeared in the y- and I'-profiles, similar to that
encountered by Longuet-Higging & Cokelet (1976) in the equivalent test of their free-
surface-wave technique. This instability also occurred in other flows treated here,
generally growing rather more rapidly in cases involving finite surface-tension terms.
The instability seems unlikely to be physical in nature since it appeared in known
stable configurations always on the scale of Aa. Its ultimate cause remains unknown.

Longuet-Higgins & Cokelet removed the instability by applying 5-point smoothing
to their dependent variables every 10 time steps. Here a different scheme was adopted.
Five-point smoothing was applied to the (z,, I',) set at every time step, but only for the
purposes of evaluating the (2, f‘k) set through (18) and (19), so that the smoothed
values themselves were not fed back into the time-stepping routine. In addition (¢/0a),
arrays were 5-point smoothed before applying the spline-on-spline technique to evalu-
ate (0%/0a?), arrays. This procedure appeared to eliminate the saw-tooth instability
with little direct effect on the independent variables and the integral invariants. Using
this scheme for the progressive wave flow, the computed wave-crest height and depth
after about two wave periods were 0-05196 and 0-048 02 respectively, while the calcu-
lated wave speed was 0-6425. The kinetic and potential energies remained constant to
0(10-%) and agree with Holyer’s computed values to O(10-%).

A test was also carried out on a free-surface breaking wave. Unlike Longuet-Higgins
& Cokelet (1976), who forced their nonlinear progressive waves to break by application
of a varying surface pressure field, here we chose initial conditions corresponding to an
initially finite-amplitude sinusoidal wave of energy larger than that of the highest free-
surface wave. Breaking then occurs at constant surface pressure. The result with
F=0,a=1,#=0,f=1and amplitude ¢ = {7 is shown in figure 1, which depicts a
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(a) 0 y
-~ 025

(b) 4
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Fiaurer 1. Time sequence of profiles for constant-pressure breaking wave,a = 1, F = 0, 8 = 0,
initial amplitude = L7: (@)t = 0, (b) 1-0, (c) 1:75, (d) 2-25.

sequence of plots of the wave shape for¢ > 0. The wave may be seen to form a region of
high curvature near the crest, followed by smooth breaking. At ¢t = 0 in figure 1(a)
§=32x10""7, Q=17%x10"7 L, = 0-069805 and E = 0-323487, while at¢ = 2:251in
figure 1(d) the values§ = 2-1x 1075, Q = 4-7x 1074, L_ = 0-069625 and ¥ = 0-323396
were calculated, with similar values for intermediate times.

4. Kelvin—-Helmholtz instability
4.1. Linearized theory

For g; > p,, the two-fluid interface may be subject to Kelvin—Helmholtz instability for
sufficiently large |0, —U,|. In terms of dimensional co-ordinates, it may be shown
(e.g. Yih 1969, chap. 8) that the evolution of small disturbances to C proportional to
exp [thk& — wl] follows a dispersion relation of the form

or ROZDP D[y (i) + L] (31)

(Pt Po)? PrtP)  Prt+Pe)

where k = 27/A is the disturbance wavenumber. Analysis of (31) further shows that
the interface motion is stable at all A provided that AU = |0, ~U,| < AU, where

5 45 o
802 = 2 (B2 g5, - (32)
P1P2
The onset of instability first occurs for AT = AU, and at a critical wavelength given by
g,. )t

A, =21 {j)', (,01-,02)} . (33)

For AU > AU, the flow is unstable for all A > A,, where
A, = A[K + (K2 1)} (34)

The maximum growth rate oceurs at
Am = 1-5A[K + (K2 —0-75) 1, (35)
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a g F s J, efm N
0-125 1-0 —0-25 —0-077 — 0-01 45*
0-125 0-0 —0-75 0-372 0-0 0-01 91
0-125 1-0 —0-75 0-310 0-461 0-005 45
0-125 1-0 —0-73 0-310 0-461 0-01 91
0-125 1-0 —0:75 0-310 0-461 0-0333 91
0-125 1-0 —0-75 0-310 0-461 0-10 91
0-750  1-0 -2-0 0-999 0-933 0-005 45
0-750 1-0 —-20 0-999 0-933 0-01 91
0-750 1-0 -20 0-999 0-933 0-0333 91

TABLE 1. Values of parameters for Kelvin-Helmholtz instability ; * indicates linearized stability

where
K = (AU/AD ) = n(1 —a?) F¥(4|a| ). (36)
We shall study the evolution of disturbances to the shape of C given at ¢ = 0 by
y = —e€sin 2x, where ¢is the amplitude. We choose I'(x, 0) corresponding to the normal-
mode solutions. If we define
S = A /dmg = H(1—o?) F2 - 2(f?|a| + )], (37)

then the normal-mode linearized solutions may be expressed in the form
y = —eeXitgin[2(x —c, b)), ‘[
[ = m F(x —}m) 4 2eexit{(c, + U) cos [2(x — ¢, )] — ¢;8in [2(z — crt)]}.J

In (38) for S < O (stable), ¢, = (—S)}, ¢; = 0. The solution is a stable wave propagating
with period 7% = 7c,!. For § > 0 (unstable), ¢, = 0, ¢; = S¥. Here the disturbance
grows exponentially with e-folding time 7, = (2¢;,)~'. Equations (32) and (33) show
that instability will first occur at § = 1 and at a critical Froude number

1—02

(38)

4.2, Present results

The initial conditions were defined by x, = —im+(k~1)Aa (k= 1,...,N), where
Aa = 7/(N —1), with y(x;, 0) and I'(x;, 0) being calculated from (38). Table 1 sum-
marizes the parameters of the cases discussed presently. For most cases § = 1-0 was
used since this is the critical value suggested by linear theory and which is also sup-
ported by the experimental evidence of Thorpe (1969). The value & = 0-125 was chosen
since it corresponds to that used in some of Thorpe’s experiments, but other values
are arbitrary. Negative values of F were used to obtain a conventional clockwise
roll-up tendency, while the value of the velocity-weighting funection was chosen as
J(a) = const, = a for all cases. For adequate resolution along C it is clearly desirable
that 8, = mA;/A > Aa. Forgiven N, (34)-(36) show that this condition places practical
limitations on the values of # and F that can be used, so that for example flows in
which capillary effects are reduced (4 < 1), or those strongly dominated by inertial
forces (# = 1, F » 1), cannot be treated realistically. Thus, we have generally chosen
F ~ O(1), in which case buoyancy, inertial and surface-tension forces are all of the
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Fioure 2. Time sequence of profiles for two-fluid interface, & = 0-125, F = ~0-75, f = 0,
€ = 1357: (a) t, = 0, (b) 0-6218, (c) 1-2093, (d) 1-4009.

same order. An estimate of the minimum allowable At follows by supposing that the
smallest resolvable length scale is the local arc-length inecrement As ~ O(w/N). If
waves of length As are stabilized by surface tension, it follows from (31) that the
dimensionless time scale (period) associated with their linearized normal modes is

AT = {2/map?t Ast. (40)

Resolution of this motion requires that At € min (A7'). Checks were carried out during
the simulations described here and in §5 to ensure that this condition was not violated.

For the stable flow case listed in table 1 the wave speed was estimated by following
the maximum in the wave profile over somewhat less than two wave periods. The value
obtained was 0-295, compared with the linearized value of 0-277, thus indicating that
nonlinear effects may be substantial even for ¢/A of order 10-2, Zalosh (1976) also
found differences between finite-amplitude calculations and linear theory, but the
discrepancy was of opposite sign. The values of the calculated integral invariants for
the stable case were as follows: both ¥ and  were O(10-7) throughout the first wave
period, increasing to O(10-%) towards the end of the second. The change in X-
momentum AL, = L(¢)—L,(0) showed similar variation, while AE = E(t) - E(0)
was 0(10-%) at the end of the first period and 0(10-¢) toewards the end of the second. It
was noted that the wave amplitude increased by about 30 %, during the run, indicating
a possible long-time-scale instability associated with finite amplitude.

Figure 2 shows the evolution of the interface for the unstable case of table 1 with
B = 0 chosen to simulate zero surface tension. Note that time is specified as ¢, = 283 as
suggested by (38). The interface shape is smooth at £, = 1-2093 (figure 2¢) but has
developed severe irregularities at f = 1-4009 (figure 2d) before there is any suggestion
of large-scale roll-up-like behaviour. For this case it is easy to show that §5s= 0. Hence
the most likely cause of this behaviour is discrete Helmholtz instability on the scale of
As as a numerical consequence of the short-wave-instability problem.

The inclusion of surface tension in the case depicted in figure 3 with § = 1-0 leads to
more-coherent behaviour. The crest-trough amplitude grows uniformly at first, as
predicted by the linear theory. Here § = 0-461 > Aa = 0-0349, so that the resolution
is at least initially adequate in the linear regime. By £, = 1-6005 one of the points of
inflection on the profile in figure 3 has developed into a region of rapidly increasing
slope as nonlinear effects become evident. At £, = 1-6526 this part of the interface
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Ficure 3. Time sequence of profiles for two-fluid interface, &« = 0125, F = —0:75, f = 1-0,
€ = yism: (a)t; = 0, (b) 0-6218, (c) 1:2102, (d) 1-6005, (e) 1-6526.

becomes vertical as the wave is about to break. For greater values of ¢, the interface
did not roll up smoothly but rather developed small irregularities on the vertical
section. These are shown in detail in figure 4 (a), which depicts a sequence of close-up
plots of the interface profile in the near-vertical region, spaced at equal time intervals,
Figure 5 shows the evolution of the interface in an unstable configuration with a =
0-75. The profile develops a sharp crest, which was found to be characteristic of near-
unity values of «. This flow also led to the appearance of small-scale corrugations,
which may be seen to the right of the profile crest in figure 5 (e) and more clearly in the
close-up sequences of figure 6. The eventual development of these fine-scale motions
occurred in all of the flows in which surface tension was included, usually beginning in
high-curvature sections of the profile. Possible interpretations of this behaviour are
discussed subsequently.

It is convenient here to give values of the integral invariants of the calculation of
figure 3. By t, = 1-2102 (frame ¢)%, Q and AL, were all O(10-8), with AE ~ 0(10-5),
Att, = 1-6526 (frame e) 7 had increased to 0(10-8), Q to 0(10—%), AL, to O(10-8), while
AE remained O(10-%). The potential, kinetic and surface energies at this point were
respectively 0(10-3), O(10~2) and O(10-2). These values were typical of other calcula-
tions reported here.

Several simulations with N = 45 were carried out to determine the effect of ¢ on the
broad features of the primary instability. Generally, there was found to be excellent
agreement with the linear theory up to the time at which the interface developed a very
steep section with a subsequent underprediction of the maximum Y-displacement.
The effect of € on the profile shape at the value of t for which the profile first developed a
nearly vertical section was also investigated as a measure of the influence of a finite
initial perturbation on the nonlinear growth of the unstable normal modes. The values
of ¢/m so tested are shown in table 1. The results indicated that for the two cases
(o, 8, F) = (0-125,1-0, — 0-75) and (0-75, 1-0, — 2-0), the effect of amplitude becomes
small for ¢/ < 102,
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F16URE 4. Close-up of interface profile at equal time intervals, & = 0-125, F = —0-75, # = 1-0,

€ = 1ism, 16904 > ¢, > 1-5867: (a) smoothing for time derivatives only; (b} smoothing of depen-
dent variables.

5. Rayleigh-Taylor instability
5.1. Linearized theory

Pure Rayleigh-Taylor instability may be generated by putting F = 0 with o < 0.
For initial conditions given by y(x, 0) = — ¢ cos 2z, ['(x, 0) = 0, the linearized normal-
mode solution may be written as

y{x,t) = — e cosh wt cos 2z, 1 (a1)

I'(x,t) = —wesinh wi[cos 2z + 1], J

where w? = 2|a|(1—£?). It follows that for # > 1 (A < A,) the interface is stabilized by
interfacial tension, undergoing oscillations of period Ty = 2m[2]a| (82— 1)}-%. For
B < 1 unstable exponential growth of interfacial shape perturbations results. By
returning to physical co-ordinates, it may be easily verified that the maximum growth
rate of a single mode disturbance occurs at a wavelength corresponding to a value of
B =} = 0-5774.

5.2, Present results

Owing to the geometrical symmetry of the interface profile about X = 0 it is sufficient
to follow the motion of a half-wavelength in 17 > a > 0, with resulting savings in
computational effort. The calculations were carried out with N = 61 points on the
half-wavelength. Values of & = —0-998, —0-5 and — 0-0637 were chosen, the first and
last of which correspond approximately to the air-water and benzene-water combi-
nations studied experimentally by Lewis (1950). The initial conditions were defined by
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Fieure 5. Time sequence of profiles for two-fluid interface, a = 0-75, F = — 2-00, p = 10,
€ = ghgm: (@) 1, = 0, (b) 0-6149, (c) 1-2150, (d) 1-6050, (e) 1-7854.
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Freure 6. Close-up of interface profiles at equal time intervals, @ = 075, F = --2.0, # = 1,

€= 1357, 1'7859 > ¢, > 1-4285.
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F1GURE 7. Sequence of interface profiles, « = —0-998,F = 0, = 0. Values of

t, = [2|a|(1 — 2)1}% as shown.
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Ficure 8. Close-up of the interface bubble profile between frames (d) and (f) of figure 7.

2, = (k—1)Aa (k= 1,...,N), where here Aa = }r/(N — 1), with y(z,,0) and I'(z, 0)
being obtained from (41). The motion thus starts from rest. For the computations
with # < 1, the particle-velocity-weighting function was specified as f(a) = — cos 2a.
With this choice we are then following particles on the concave side of the interface
at each of the two antinodal points (spike and bubble tips) with a smooth variation of
weighting in between. Thus undesirable separation of marker particlesdue tostretching

of C in regions of high curvature is avoided.

Figure 7 shows the unstable growth of the interface amplitude for & = —~0-998 and
£ = 0, chosen to simulate zero surface tension. The value ¢ = 0-125 was used for this
and most other calculations reported here since it gives approximately the same ¢/A

ratio as in Lewis’ air-water experiments. In figures 7 (a)—(d), until
t, = [2]a| (1 - A1t = 2-3694,
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Ficure 9. Sequence of interface profiles, « = —0-998, F = 0, § = 0-2. Values of ¢, as shown.

the initial growth of a spike for ¥ < 0 and a bubble for ¥ > 0 can be clearly seen.
The interfacial shape remains smooth up until ¢, = 2-7739, at which point a small
kink can be seen just to the left of the bubble tip. The details are more apparent in
close-up of figure 8. A region of positive curvature develops near @ = }7, which sub-
sequently grows into a secondary Rayleigh—Taylor instability within the bubble region
of the primary instability. A cusp-like feature indicating the appearance of a curvature
singularity can be clearly seen in the final profile. The most likely cause of this behaviour
is again a discrete form of the infinitesimal-wavelength instability predicted by Birkhoff
(1962). The reason for its growth on the spatial scale shown in figures 7 and 8 is un-
known. It may be due to an effective numerical surface-tension term being generated
in some part of the calculation possibly in the 5-point smoothing used in the calculation
of the (,, I';) set. These secondary instabilities were not seen by Baker et al. (1980) in
their computation of the « = — 1, # = 0 case, nor did they appear after the wave had
overturned in the present breaking-wave calculation of figure 1.

In the run depicted in figure 9, # = 0-2, which corresponds approximately to the
initial perturbation wavelength at the air—water interface in Lewis’ experiments.
There is no sign of the secondary instability near the bubble peak, so the calculation is
able to proceed until in figure 9 (¢) the spike~bubble amplitude exceeds 2 wavelengths.
Note that with the choice f(a) = 0 (moving with the mean velocity on the interface) the
calculation of figure 9 could not be extended past f, = 3-1369 owing to stretching of
interface marker points near the spike and bubble tips. Figures 9 (d-f) show clearly the
appearance of a heavy fluid bulge due to the effect of surface tension resisting the
formation of regions of very high curvature in the vicinity of the spike tip. In figures
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Fi1cure 10. Three sequences of profiles for various a; F = 0, § = 0-5774: (a) 2 = —0:0637,
(b) —0-500, (c) —0-998; values of ¢, as shown.

9(e, f) the small-scale interface irregularities have developed with subsequent termina-
tion of the calculation. We mention here values of the integral invariantsfor the calcula-
tion A of figure 9, which are typical of other cases with ¥ = 61. Both 7 and Q increased
steadily from O(10-8) in figure 9(a) to O(1073) in figures 9(e,f). In figure 9(a) AE =
0O(10-8), increasing to O(10~%) in figure 9 (d) and to O(1072) in figure 9(f). The corres-
ponding values for Us(t) — Us(0), V(¢)— V(0) and 7'(¢) —T'(0) at frame (f) were respec-
tively O(10-1), 0(10) and O(10), so that fractional changes remain small.

Figure 10 shows three sequences that illustrate the effect of & on the evolution of the
interfacial profile for # = 0-5774. With a = — 0-998 the interface remains smooth with
the formation of a bulge at the spike tip as for the case of figure 9. The more pronounced



526 D. I. Pullin

arcosh (y/e)

/ I 1 L 1 1 1 Il J

0-8 1-6 2-4 32
I3
Ficure 11. Growth of bubble amplitude compared with experimental results of Lewis (1950);
~———, linear theory, £ = 0; —+-—, calculation,a = —0-998,5 = 0-2; — — — — calculation,
a = —0:0637, § = 0-5774; +, benzene—water data; §, air—-water data.

bulges of figures 10(a,b) with & = —0-0367 and — 0-05 respectively may be due to
incipient Kelvin—-Helmholtz instability being inhibited by the action of surface tension.
The last frames of figures 10(a, b) again show the development of irregularities on the
interface in regions of very high curvature where the solution is determined locally by
competing inertial and surface-tension forces.

In figure 11 the growth of the bubble amplitude is plotted together with some of the
experimental results of Lewis (1950), using f, = (c/2m)}¢ as the time axis to allow direct
comparison with figure 16 of Lewis’ paper. Experiment and calculation are only in fair
agreement, even taking into account the spread of air-water interface data. Lewis’
experiment was very difficult to perform however and the results may suffer from a
variety of systematic sources of error such as accurate determination of the apparatus
acceleration (of order 20-50g), the initial disturbance amplitude and the mean interface
level required to estimate the bubble amplitude.

6. Discussion

It seems clear from the present results that the inclusion of a surface-tension term in
(19) allows the interface motion to be followed for longer periods of time, but that
eventually profile irregularities appear which are not dissimilar to those observed for
the ill-posed B = 0 case. Three possible sources of these difficulties are as follows:

(a) The presence of a surface-tension term only removes the ill-posedness for some
finite initial period. Later in the highlynonlinear phase, inertial (orgravitational) effects
are sufficiently strong to excite infinitesimally short perturbations locally so that ill-
posedness returns. This hypothesis is contrary to the intuitive notion of surface tension
(successfully) resisting the formation of interface curvature singularities with concomit-
antinfinite pressure jumps. Itisdifficult to seehow it could be tested by numerical means.
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(b) The instabilities are physically based. Some evidence for this interpretation is
suggested by the experiments of Thorpe (1969). Using a tilting-tank technique to
generate Kelvin—Helmholtz instability for o = 0-124, Thorpe observed the appearance
of small breaks in the two-fluid interface and the subsequent formation of drops of one
fluid in the other. No smooth overturning motion was observed. Thus the irregularities
may be the two-dimensional equivalent of what isin reality incipient three-dimensional
drop formation. One possible mechanism for this phenomenon is Kelvin-Helmholtz/
Rayleigh-Taylor instability on a scale comparable with the local arc length under
conditions generated by nonlinearities. To investigate this hypothesis values of Asand
Am as defined by (34)-(36) corresponding to local conditions at each point on C' were
calculated, taking into proper account the normal component of effective gravity and
the local instantaneous velocity jump. For figure 4 (a) at ¢; = 1:6697, min (s) ~ 0-11
and min (8m = 7An/A) ~ 0-16, while for figure 6 at ¢; = 1-7309min (6;) ~ 0-11. For
figure 9 at ¢, = 5-4883 min (ds) ~ 0-60 and min (dy) ~ 0-90. Since these values are rather
larger than the local arc length, we might conclude that the irregular behaviour is not
due to secondary inertial /gravitational instabilities. This conclusion could be modified
substantially by the effect of local interfacial compression which usually accompanied
the appearance of irregular motion. Vortex-sheet compression is known to intensify
linearized inertial instability in the constant density case (see Saffmann & Baker 1979)
and so may well reduce the effective d in the present flows.

(¢) The irregular behaviour is a purely numerical instability, possibly a recurrence
at a later time of the saw-tooth instability discussed earlier. One method of testing this
hypothesis (and also (b)) is to improve spatial resolution through increasing N. The
irregular behaviour was certainly present with N = 45 for the flow of figures 3 and 4
and it appeared at about the same ¢ as for N = 91. Unfortunately, computational
limitations restricted further significant increases in N. Some additional tests, how-
ever, were carried out for the flow of figures 3 and 4. To investigate the reliability of the
predictor—corrector time-integration method, this case was recalculated using a
standard fourth-order Runge-Kutta method. The results were indistinguishable
graphically from those of figure 4(a). This case was also recalculated with 5-point
linear smoothing on the (z;, I',) set every 5 time steps in addition to the smoothing
discussed in §3.3. In the results displayed in figure 4(3), although the small-scale
motions are partially attenuated, they are nevertheless present and growing in ampli-
tude at ¢, = 1-6904. Moreover, At has been reduced to O(10—%), which is too small for
the practical continuation of the calculation. From this example we may tentatively
conclude that linearly smocthing the dependent variables is not an effective means of
suppressing the appearance of small-scale profile irregularities.

Additional difficulties in the form of any of (a)-(c) above may also result from the
dispersive non-dissipative nature of the surface-tension mechanism in the context of
the present inviscid model. Equation (31)shows that, in the absence of viscous damping,
very short capillary waves are only neutrally stable. Furthermore their phase velocity
increases as A~* when A — 0. It is therefore conceivable that this unphysical short-
wavelength behaviour combined with the present use of periodic boundary conditions
could lead to some form of spurious nonlinear dispersive reinforcement of small-scale
motions, and subsequently toeither the localamplification of finitelength scalesorin the
worst case to local ill-posedness. If this were indeed the case the addition of surface ten-
sion alone could not be seen as a satisfactory means of stabilizing the interface motion,
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7. Conclusions

A vortex-like description of the nonlinear motion of an interface separating two
inviscid immiscible fluids of different densities has been formulated. A scheme for the
numerical solution of the resulting initial-value problem has been developed and
utilized to study the nonlinear behaviour of finite-amplitude normal modes of both pure
Kelvin-Helmholtz and pure Rayleigh-Taylor instability. In addition to the growth of
the primary instability, three types of secondary instability were identified:

(1) a saw-tooth-like instability similar to that found by Longuet-Higgins & Cokelet
(1976) in their free-surface-wave studies;

(II) the development of chaotic motion among the interface-marker particles for the
strong inertially driven Kelvin-Helmholtz mode and the appearance of a curvature
singularity in the weaker gravitational Rayleigh-Taylor mode, for all cases in which
no surface-tension term was included in the interfacial equations;

(ILI) the local appearance of small-scale corrugations in regions of high curvature in
the interface profile.

It is almost certain that the type I behaviour results from some form of numerical
instability within the discretized computational scheme. The method of partialsmooth-
ing described in § 3.3 was found to be a useful ad hoc means of controlling the growth of
these motions in the present application, but, since the source of the instability was not
discovered, there is no guarantee that it would be effective in other configurations. The
present results indicate that the type II instability is the nonlinear analogue of ill-
posedness of the linearized solution in the absence of surface tension and /or viscosity.
The onset of this behaviour was suppressed for a finite time by the inclusion of a
surface-tension term, which allowed the interface motion to be followed into the non-
linear regime, but eventually the type I1I instability appeared, leading to the termina-
tion of the simulation. The cause of this instability remains unknown. It could be
dispersive capillary-wave phenomena that are accurately reflected in the nonlinear
simulations but which are physically spurious in the absence of viscous damping.
Alternatively, the instability may be a purely numerical effect that could be eliminated
through analysis of the discretization procedures employed. It seems clear that the
late-time irregular motion cannot be explained as straightforward inviscid Kelvin—
Helmbholtz or Rayleigh-Taylor instability corresponding to local conditions on the
interface. There nevertheless remains the interesting possibility that the type IIT
behaviour in some sense represents the real tendency of the interface to break up into
droplets or spray through an unknown and probably nonlinear mechanism, as the
flow locally undergoes transition to a (three-dimensional) turbulent mixing phase. The
realistic computation of the two-fluid motion in this regime would then require some
form of statistical description as the present two-dimensional inviscid model of a
continuous simply connected interface is clearly inappropriate,

The author would like to thank Dr J. Y. Holyer of Topexpress Limited, who kindly
supplied him with detailed solutions for interfacial gravity waves, and also Dr R. H. J.
Grimshaw of the Department of Mathematics, University of Melbourne, who provided
useful comments on the original manuscript.



Numerical studies of surface-tension effects 529

Appendix A. Marker-particle velocity-weighting function f(a)
The velocities of the fluid 1 and fluid 2 on either side of 2(a, ) on C are given by

().~ (@), :(&)E) sz

aw aw 1 (oI'\ (0z\ !

(#),- (%), = &)E) b
For p, = p, the standard convention has been to define the velocity of a marker
particle as the mean of (42a, b). It then follows that (see §2.2)

I'(a,t) = I'(a,0), (43)

which allows the identification of marker particles with material particles obeying
Helmholtz’s theorem for two-dimensional flow. Equations (9) and (10) with f = 0 are
then a complete ‘ Eulerian-Lagrangian’ description of the flow automatically satisfy-
ing pressure continuity at C.

It is nevertheless clear that in an inviscid fluid C(¢) itself is not a material curve but
_ rather defines the instantaneous line of contact of material curves of fluid 1 and fluid 2
in local relative tangential motion. Marker particles are thus not (in general) material
particles, and consequently the definition of their velocities is constrained only by the
requirement of consistency with continuity of the normal component of the extended
Eulerian velocity field. We may therefore define the marker-particle velocity validly
according to

= y+n() +10-n(G) - (44)

Iff + 0 (44)is no longer sufficient to describe C(¢), since (43) is not then valid, An addi-
tional equation for I'(a,?) is required, which is obtained in §2.2 from the pressure-
continuity condition. Hence, for p, = p,, f = 0 is not a necessary choice but is rather a
mathematically convenient one with a somewhat misleading physical interpretation.

Now, for p; + p,, f = 01is no longer particularly convenient, since new circulation is
continuously generated locally by buoyancy, surface-tension and inertial forces, and
there is no general equivalent of (43). In a free-surface flow, for example, with ¢ = + 1
the choice f= +1 is physically most appropriate (see Longuet-Higgins & Cokelet
1976; Baker et al. 1980). Indeed, in view of the aforementioned freedom in defining
marker-particle velocities, there seems no reason why we should not put f = f(a),
provided 1 > f(a) = —1. The study of simple special cases (e.g. a straight uniform
vortex sheet with f(a) = —sin 2a shows that choice of a non-constant f can lead to
problems such as marker particles converging and crossing on C. Since |0z/da| ' is a
measure of particle density on C, particle cross-over implies that 6z/da = 0 at a finite
number of points. Here the sheet would develop regions of overlay in the sense that
a = a(z) for real @ would be multiple-valued. In this event (18) and (19) should remain
valid, but the present method of evaluating CPV integrals near |0z/da| ! singularities
would certainly have to be modified. In the present computations min |dz/0a| was
estimated at each At to verify that practical difficulties associated with sheet overlay
did not arise.
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F1Gcure 12. Regions R, and R, for determining z-momentum and kinetic energy ;
curve L, = C+ D+ E+F.

Appendix B. X-momentum and kinetic energy

At a time instant ¢, consider two strips R, and R, of the 1 and 2 fluids respectively,
each of X-dimension equal to 7 (one wavelength) and of average Y-dimension h > 7,
as shown in figure 12. Let the boundary surrounding R, be the clockwise curve L,,
which we divide into segments consisting of the interface €, and straight sections D, E
and F.

The total X-momentum of the fluid instantaneously in R, is given by

L, =p f le (%)ldXdY —p, SEL, Y(g?)lds, (45)

where the last step follows by application of Green’s theorem and subsequent inte-
gration by parts. In (45) s is the arc length increasing clockwise around L,. Writing

il I Y R

noting that f = — J.
D F

owing to the X-periodicity of the velocity field, and using an expansion of (5) for ¥ - o0

to evaluate f
E

we find that

3

L, = plf y (gg) da+7p, U h+O(he2), (46)
c 1

By an analogous argument it follows that the total X-momentum instantaneously in
R,is
o
L,, = —py| ylz=) da+7mp,Uyh+O(he2*), (47)
o \oa/,

On summing (46) and (47) the O(h) terms vanish by virtue of p, U, + p, U, = 0 through
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our choice of reference frame. Putting ¢, = ¢+ i and ¢, = §— 1T on C, where ¢ is
the mean velocity potential (I' = ¢, — ¢,), and using (2) gives, as k - o, the total X-
momentum per wavelength as

n )
L, = 2f , y(aﬁ?+lg) da. (48)

On following a similar procedure to the above, the total kinetic energy of the fluid in
R, may be expressed as

T, = 1p, f f Rl(V¢)2dXdY (49)

[0 ) oo [ () )

In establishing (49) we have applied Green’s theorem and have invoked X-wise
periodicity of ¥ and the velocity field together with 8¢ /on = —dyr/0s on L, (n is the

normal to L;) and the fact that WdW = 0. Againf may be evaluated using (5),
Ly E
so that

7= o1 [ ¥ (5) da-FoUlf—vot]+ e, Ut 4 Ohe®),  (50)

where /,(¢) is a known function arising from (5), and f is a constant. The analogous
expression for the total kinetic energy in R, may be obtained likewise as
0 m
Ty =—tos[ 4o () da+ TR UL+ 0O +7p, VB4 O™, (o)
Summing (50) and (51) and utilizing p, U, + p, U, = 0 together with ¢, = ¢, = y on C,
we then obtain for the total kinetic energy of the fluid instantaneously in B, and R,

1 0 0
T,+T,= EJ‘CQ‘& [Pl ('52‘5)1 —Pe (%)2] da—3uf(p, Uy —p, Usy)
+mh(p, Us + py US) + O(he—2t), (52)

The form of (52) indicates that as & — oo the quantity 7', + T, — wh(p, U% + p, U3) may
be interpreted as that part of the total kinetic energy per wavelength associated with
deviations of C' from y(a, t) = 0. Noting that the term involving fis an absolute constant
which may beneglected, we may now take the first term on the right of (52) as a quantity
directly proportional to the time-varying finite part of the kinetic energy per wave-
length, which, using (2), may be written as

1 (i o¢ 1T

Equations (48) and (53) reduce to the known X-momentum and energy invariants
(see Moore 1980) for o = 0.
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